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The resonance structure in a random dimer model 
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Calcutta 700064, India 
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AbslracL We have sludied a random dimer madel using the transfer malrix method 
and used the Landauer formula U, mmpute mnductances of large dimer chains as a 
function of the Fermi energy of lhe incident electron. Nk find w'y interesting resonance 
SlNClUreF in this y l e m  amund two special energies, namely the site energies (taken 
from a binary dislnbulion). ?lie localization length amund these energies is found to 
diverge quadralically as a function of the energy difference as one appmaeha  one of 
these energies from either side. I1 is also found that the mnductance vanishes for this 
random dimer chain at almost all the allowable energies, just as it does in the case 
of a random 'monomer' chain. 'rhus a localizatian-delocali~ation transition (and more 
certainly a mobility edge) ir absent in this system as apposed 10 what is claimed in some 
recent articles. 

1. Introduction 

It is quite well known from rigorous results that almost all the electronic states 
in a onedimensional disordered system are exponentially localized (see e.g. Mott 
and "e l%l). For systems with a tight-binding Hamiltonian the results are 
usually proved in the case of nearest neighbour hopping. The randomness in the 
site energy or the hopping integral induces a new length scale in the system, namely 
the localization length, and for almost all the available energies finiteness of this 
length leads to exponential localization. There is a random set of discrete energies 
(of total measure zero in the infinite length limit, see Pendry 1987) for each realization 
of the sample for which the system is perfectly transmitting and these are stochastic 
resonance states called Azbel resonances (Azbel 1983). Since isolated resonances 
cannot contribute to transport at zero temperature, there is no metal transition at zero 
temperature. While the tight-binding Hamiltonian in one dimension with constant or 
periodic site energies (i.e. no impurity) gives rise to Bloch states which have zero 
resistance (ballistic electrons) and the slightest impurity gives rise to exponentially 
localized states, the search is on to find situations where states of intermediate nature 
(e.g. diffisive with ohmic resistance behaviour) are possible. This search has prompted 
works on Fibonacci lattices (see e.g. Kohmoto and Banavar 1986) where all the states 
are critical, and Aubry or generalized Harper models for site energies (potentials) 
where a metal-insulator transition has been observed in one dimension @as Sarma 
a al 1990, Basu a al 1991a). The site potentials for all the three cases mentioned 
in the last sentence follow a certain deterministic pattern and hence have long range 
correlation in their form. Thus a natural question to ask is whether it is possible to 
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drive the insulator to metal transition simply by changing the range of correlation 
in the randomly varying site potential. This question has been addressed recently in 
several works (see e.g. Varriale and Theumann 1990, Kolomeiskii 1991) within the 
framework of field theory and renormalization group. 

In a recent paper Dunlap, Wu and Phillips (1990), referred to as DW from now 
on, made a rather intriguing claim that there is an absence of localization in a random 
dimer chain. In a later paper (Wu el a1 1992), there is a further astounding claim 
that the model 'possesses a mobility edge separating localized from delocalized states'. 
Their model uses a tight-binding Hamiltonian with each site being occupied by either 
an A- or a B-type atom with site energies eA and eB in such a way that there are 
always two A- or two B-type atoms on adjoining lattice sites. The hopping term is 
of nearest neighbour type and there is no disorder in the hopping term (i.e. the 
off-diagonal term). Thus this system has the shortest possible range of correlation, 
namely that of a lattice constant, in the randomness of the site energy. They studied 
the dynamics of an electron initially localized at a certain site in the random dimer 
chain by numerically integrating the equation of motion: 
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for the site amplitudes c,(t). Studying the mean square displacement (MSD), 
Z(t) = C?n21cm(t)lZ, they claimed that the MSD gows as W (i.e. a super- 
diffusive behaviour) provided ItA - csI < 2 V  and that it grows as t (diffusive) if 
leA - eBl = 2V. For all other cases the MSD will be bounded (i.e. the particle remains 
localized). Since their claim does not involve energy eigenstates of the electron it 
seems that there is a global metal-insulator transition, Le. either all the states are 
localized (if I t A  - eBl > 2V)  or all the states are extended (if leA - eBl < 2V). 
According to DWP, the initially localized particle becomes delocalized because fi of 
the electronic states remain extended over the entire sample and they are responsible 
for the transport in this system. This result is very surprising because the system 
is mappable to a random binary alloy with two atoms per unit cell and according 
to rigorous results in one dimension (Ishii 1973) almost all states, except for some 
isolated stochastic resonances (Azbel 1983), are localized for a purely random (i.e. 

resonances do not contribute to transport, one obselves a vanishing of the diffusion 
constant (proportional to conductance by the Einstein relation) for any amount of 
disorder in one dimension. One may look at the problem from another point of 
view. The sealing theory (Abraham e1 al 1979) of metal-insulator transitions in a 
random system predicts a continuous phase transition only for dimensions greater 
than two. At the transition point in a second-order phase transition, the correlation 
length (which is the localization length here) becomes infinite. It is surprising that a 
short range correlation on the atomic scale would give rise to a diverging correlation 
length and hence change the qualitative nature of the transition in one dimension. 

lb resolve this perplexing problem we undertook a transfer matrix study of the 
above system and calculated the transmittance which is also equal to the two-probe 
conductance according to the Landauer formula (Landauer 1970). The advantage 
of using the transfer matrix method is that we can go to a very large chain size 
and, since this method solves for the amplitudes at each site only once as one keeps 
on expanding the lattice it is much less time consuming (while solving for the time 
dependent equation (l), one has to update the amplitude at each site for all the time 
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steps). As will he discussed in the sequel, we find that except for some very special 
resonance structure near the two site energies, there is nothing unexpected occurring 
in this model. Just as in the case of a random 'monomer' chain, we find an absence 
of quantum diffusion in this model. 

The rest of the paper is organized as follows. In section 2 we discuss the transfer 
matrix formalism for the sake of completeness. Then in section 3 we give our results 
and discussions on the transport properties in the random dimer model. Finally in 
section 4 we present our conclusions along with a short summary of the results. 

2. Formalism 

We shall focus on the simple tight-binding Hamiltonian with nearest neighbour 
hopping 

where {+:) and {bn) are the sets of creation and annihilation operators for the 
tight-binding basis orbitals, e,, is the site energy and V is the nearest neighbour 
electron hopping integral. If one writes the eigenfunctions of the above Hamiltonian 
as linear combinations of the site orbitals, then the site amplitude c,-values at three 
consecutive sites may be related by 

where P,(E) is the transfer matrix at the site n, i.e. 

The off-diagonal term in the Hamiltonian, i.e. the hopping energy V, is a non-random 
quantity and is taken to he 1 to set the energy scale. The diagonal terms, i.e. the en's, 
are taken from a binary distribution in such a way that the site energies on pairs of 
consecutive lattice sites are assigned the same random value (to create the random 
dimer chain). The energy E is the Fermi energy of the incident electron. 

lb the two ends n = 1 and n = N + 1, we attach two elementary, perfectly 
conducting, semi-infinite leads. The purpose of these leads is to hear the incoming, 
the reflected and the transmitted waves. 

Hi" = [cin+;tdj,, + Vin(4fiti4n + 4:dTct1)I (5) 

%"I = r.,,,4:4, + K"l(4fit14n + 4:&,,+1)1. (6) 

n=-w 

N 

n=N+I 

For simplicity we shall take cb = toUl = 0 and Vin = V,,, = Viead. The solution of 
the tight.hinding Hamiltonian in the two perfect leads is of the Bloch form. We shall 
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assume that the transport is ideal just up to the contact of the leads with the sample 
(m this case the random dimer chain), i.e. we assume the eigenstates on the two sides 
of the sample to be 
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c , ( E )  = Aexp(ikn) + Bexp(-ikn) - m < n < l  (7) 

c , ( E )  = Cexp(ikn)  + Dexp(-ikn) (8) N + 1 < n < cu. 
We have neglected the boundary effects, which is reasonably justified as we are dealing 
with really very large samples. Finally the wave functions on the RHS of the sample 
will be connected to those on the LHS using the transfer matrix by the simple relation 

[:I = T N  [ Z ]  (9) 

where the transfer matrix 1, is given by 

such that 

1 exp( -ik) exp( ik) 
1 1 s =  [ 

exp[-ik( O I  N + l)] 
exp[ik(N + 111 

0 e =  [ 
The elements of the transfer matrix are related to the physical quantities 

reflectance T (  E, N) and transmittance t (  E, N )  by the following simple relation 

The Landauer formula relates the energy-dependent, dimensionless, four-probe 
resistance to the transmission coefficient by 

R ( E , N )  = r ( E , N ) / t ( E , N )  = ITEI'. (16) 

(15) is the basic equation that we have used to calculate the transmittance, which is 
also the two-probe conductance given by 

G ( E , N )  = t ( E , N )  = l/ITf:('. (17) 

One should note that the concept of semi-infinite geometry is inherent in both 
the transfer matrix method and the Landauer formula. The special importance of the 
semi-infinite chain is that all transport experiments in one dimension are essentially 
performed in semi-infinite geometry in which two perfect current carrying leads are 
attached at the two ends of the chain so that the current in the form of a plane wave 
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enters a t  one end and emerges from the other end in an undistorted form, i.e. there 
is no momentum transfer so that the k-value remains unchanged. All information 
regarding the scattering of the electron in the disordered sample is contained in the 
transfer matrix, which supplies us with the reflection coefficient, ie. the amount of 
backscattering involved in the multiple scatterings inside the disordered sample. We 
mention in passing the advantage of using such open quantum systems as considered 
here. The system is open because it is connected to two reservoirs at slightly different 
electrochemical potentials through the semi-infinite perfect leads. In one sense the 
system may be compared to a grand canonical ensemble. Thus we do not need to 
h o w  the ‘allowed eigenenergies’ of the finite, isolated chain (by diagonalization) 
before we proceed. In fact, we have shown elsewhere (Kar Gupta and Sen 1992) that 
any energy here is an allowed energy for the finite version of the semi-infinite, open 
chain; but the localization characteristic due to disorder is not changed whether we 
use an isolated chain or an open chain. 

3. Results and discussion 

We start this section by pointing out that in all our work described below for these 
one-dimensional random dimer chains, we set the length scale by k ing  the lattice 
constant to a value of unity and the energy scale by choosing the hopping energy in 
the sample to be V = 1. The hopping energy in the perfect leads Vkad = V. I t  
is well known that in a quantum fermionic system at T = 0, transport is mediated 
by the fermions at the Fermi energy (or energies very close to it, if the distribution 
function is assumed to deviate slightly from the step function even at T = 0 due to 
the presence of some interaction). So we have looked at the transmittance (which 
is related to the conductance by the Iandauer formula) as a function of the Fermi 
energy. Our transfer matrix results show that for a finite chain length there is a close 
clustering of resonance states of a new type near each of the two site energies of this 
random dimer chain. Ewcept for energies very close to these two special site energies, 
the conductance falls drastically to zero at all other energies as one increases t h e  
chain length. This is shown in figure 1, which shows the four-probe conductances a t  
three different chain lengths using a coarse energy mesh for = -eB = -0.2. By 
using much finer energy meshes (the larger the chain length, the higher the resolution 
required), we discover a novel and complicated resonance structure around the site 
energies as we describe below. 

One !mows from rigorous results (Ishii 1973) that the transmittance t ( E ,  L )  
of a purely random one-dimensional system of length L decreases exponentially 
with the length of the system, consistent with an exponential decay of almost all 
the eigenstates (in a large isolated system) on both sides of their maxima. For a 
given configuration of the random system, ?(E, L )  exhibits maxima corresponding 
to transmission resonances at some of the eigen-energies which are also random, ie .  
they are specific to each particular random sequence of scatterers. The width of 
these Azbel resonances as a function of the energy of the incoming electron becomes 
exponentially small as the length of the system or the strength of disorder increases. 
This width is of the order of exp(-nL/L,) where R is of the order of unity and L, 
is the localization length. The presence of these Azbel resonance states in a random 
‘monomer’ chain has been known for a long time (Azbel and Soven 1983, &bel 
1983). However, the resonances for the random dimer chain seem to belong to a 
different category. 
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Figure L Four-probe mnductance 
for three random dimer chains with 
eg = - C A  = 0.2, and V = 1, using 
a m a n e  energy mesh. WO w1y broad 
resonance structures around the site 
energies are visible, but when length 
increass the conductance falls off bj 
tens of orders of maenilude if lhe I I I I I 

-0.4 -0.2 0 0.2 Fermi energy is not cia, to c A  or 
Energy LB. 

In contrast to random ‘monomers’, if we study the resonance structure for the 
random dimer chain with a very fine energy resolution we find that there is a close 
bunching of the resonance states around the two site energies. In figure 2 we show 
this around tB for a system with N = 10000 and tg = -eA = 0.4. In figure 3 we 
draw thc resonance structures for the same values of tA and eB as those of figure 2 
but for a larger system size (N = 50000). It is evident from these figures that as we 
increase the system size, the hasic resonance structure remains similar hut the energy 
domain in which this clustering of the resonances occurs shrinks. The dense resonance 
clusters around the site energies seem to have two different types of regions. There is 
a central core region in the middle of a cluster where the transmittances as a function 
of energy seem to be more or less oscillatory [with peaks very close to one) and the 
minima of the transmittances do not seem to fall below a certain value [about 0.94 
for -e., = en = 0.4 as seen from figures 2 and 3) when the length of the chain 
is increased. On both sides of the energy domain where the cluster core appears, 
there is a fragmentation region [as one can see) where thc decay of the width of the 
individual resonances is found to be consistent with an exponential law like that in 
a purely random system (or a power law decay with a large exponent 2 3). That 
the width of the central cluster core decreases is shown in figure 4 with the same 
values of E,, and eB as before. We have plotted the cluster core width for different 
system sizes extending up to three decades in length. The power law fitting of this 
result shows that this cluster core width decays algebraically as N-z/’ where N is the 
chain size. From a very hasic viewpoint, it would have been highly surprising if the 
cluster width of the central core (peaks of which are almost perfectly transmitting) 
had not decayed with length, because in that case, this non-decaying cluster would 
have formed a stable band of almost extended states for this ‘random’ dimer chain. 
Furthermore we have studied the width of some individual resonances inside the 
cluster core as a function of the chain length. In contrast to the Azhel states whose 
widths fall off exponentially, the widths of the resonance states inside this cluster 
core decay algebraically as N - l .  This is shown in figure 5 for eB = -eA = 0.4. This 
fact is consistent with the observation that the number of resonance states inside the 
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cluster core increases as N'13 (see figure 6). In table 1 we have shown the actual 
numbers for the resonance cluster cores for different chain sizes keeping the disorder 
characteristic the same. Incidentally this exponent of 1/3 seems to be different from 
that (In) reported by DW who claimed that c f i  (C = proportionality constant 
= 1) states will remain extended over the length of the system and that they are 
responsible for transport in this system. 

Flgun 2 ltansmittance as a function of the Fermi 
energy for a random dimer chain with <B = - e A  = 
0.4, and N = lOM0 using a very fine energy m a h  
around one of the site energies only. There is a 
similar svUcture (not shown here) around the other 
side energy. 

Figure 3. nie Same as figure 2 but for N = SoW. 

LENGTH 

Figure 4 Graph showing the decay of the width 
of the duster core with chain length for random 
dimers Hlth the same disorder paramelem as in 
figure 2 (data given in table 1). The best filling 
line shown here indicates an algebraic decay with 
an exponenl close to lr3. 

Figure S. Graph showing how the width of an 
individual resonance deep inside lhe dusler core 
scales will1 chain length. n e  best fitting line 
indicates very clearly an inverse proportionality. 

We have also diagonalized numerically the Hamiltonian for several chain lengths 
and computed the transmittance at these 'exact' eigenstates. For different chain 
lengths, we counted the number of states who transmittances were greater than or 
equal to exp (-2) (i.e. whose localization lengths were greater than or equal to the 
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I / *  

10’ 10L 105 
... Length 

Figure 6 Scaling plot for Ihe alimaled number of 
m n a n c e  slates inside the cluster core for different 
chain lengths. The best B l  line indicales that this 
number increases algebraically wich an exponent 
c l w  Io la. 

Figure I. ’Ransmiltance versus energy for two 
random dimer chains of lenglhs 50MU and 5WWO 
bul the Same f B  = - C A  = 0.8 on one side of the 
cluster core around LB. One can  see MY clearly the 
effect of disorder a1 a higher lenglh =le because 
the mre  region shrinks. The effecl of disorder 
a1 the Same length scale (more ‘fragmentation’) 
k a m e s  clear on mmparison with figure 3. 

Tabk 1. A rdndom dimer chain with V = I ,  LB = -CA = 0.4. 

Chain Energy domain of resonance Number of Wdth of each 
Length cluster mre around monnncer resonance 
N E = L B  = 0.4 inside core inside cure 

5 x 10’ 0.3672-0.4240 6 6.4 x 10-3 
1 x IO’ 0.3766-0.4091 7 3.1 x 10-1 

I 104 0.397 m . 4 0 3  50 I2 3.4 x 10-4 
5 x 10‘ 0.399 1054.402C65 21 6.6 x IO” 
1 x le 0.399 68-0.400 54 16 3.3 x 10-s 

5 103 0.397400.40424 7 6.3 x IO-‘ 

5 x IO5 0.399717-0.400229 46 6.6 x 

system size). The number of such states is found to increase as a. Thus what 
we find is that nof UN of the CO states are ballistic as claimed by DW (c < I, in 
contrast with DWP and Wu el al (1992) who claim that c = l), hut rather that these 
are the states whose localization length is system spanning and thus include the states 
both inside the cluster core and in the fragmentation region as defined by us. This 
result is also in agreement with the recent observation by Bovier (1992) who, UShg 
perturbation theory and an invariant measure formalism, claimed that for a random 
dimer system the number of states for which the localization length exceeds the size N 
of the system is proportional to N 1 I 2 .  Furthermore the overpowering role of disorder 
becomes very clear if one looks at figure 7, where leA - egl = 1.6, and compares 
with figure 2 or 3 for l eA  - eBl = 0.8. It is evident that as the amount of disorder 
increases, i.e. as leA - eBl approaches 2V, there is much more ‘fragmentation’ in the 
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resonance structure both inside and outside the cluster core. Even though our figures 
are for the higher site energy (i.e. E = eB) we have checked that all the statemens 
above are also true for Fermi energies near the lower site energy (i.e. E = E ~ ) .  

That there could be a wry large number of states (around the site energies) 
which look like extended states, but whose localization lengths are much larger than 
the typical system sizes (albeit quite large ones) considered, may be demonstrated 
very easily by studying the evolution of the two-probe resistance 4 with the chain 
length for Fermi energies close to E,, or In figure 8 we have shown the logarithm 
of the two-probe resistance (negative of the logarithm of transmittance) as a function 
of length for E = 0.4004, where cB = 0.4. The existence of an essentially exponential 
localization is quite clear here and t h e  localization length (two times the inverse of 
the slope for the best fitting straight line) for this particular realization turns out to 
be about 9.0 x lo7. We would like U) mention two points here. First, in this particular 
a” representing states close to one of the site energies, the resistance tends to 
increase with rather sharp jumps and a concomitant noisy plateau-like structure, the 
plateaux themselves being reminiscent of the behaviour in a generalized Harper model 
m a k u r  et ul 1992). In the latter model the plateau structure is very systematic, the 
potential being deterministic with a slowly varying period. It would be interesting to 
know what gives rise to this plateau-like structure in  a random potential. Second, 
it should be noted that the resistance for this sample remains fixed at an average 
value of about exp (1.5) from a length of about 4.0 x lo7 to about 12.0 x lo’, and 
thus the average localization length in this rather large domain (or in any other 
plateau-like region) would seem to b e  zero. Thus it is not surprising that the diffusion 
characteristic of this state would look, in this length scale, not quite like a Bloch state 
(whose MSD grows as t 2 ) ,  but like a somewhat resistive, a so-called ‘superdiffusive’, 
state with the MSD growing as t31Z, for relatively short time scales. Yet indeed it 
is an exponentially localized state, and to know the exponentially localized nature 
of this state one would have to study its diffusion for times much larger than those 
considered by DWP (typically of the order of l@ in units of ‘average’ hopping time). 
The possibility of many such states even for quite large system sizes must be at 
the heart of the misplaced conclusions of DWP. lb justify this statement even more 
convincingly we will first show that a quadratically diverging localization length at 
a single, isolated energy in this region is indeed consistent with a square-root-wise 
growth of the number of states (AA) with system spanning localization length. For 
that purpose, let us assume that E .- IEF-cBJ-@.  ?hen one may write for the energy 
domain with N 6 6 < CO, A E  - ~ - * / ’ ’ I ~  = N-’/”. Now if one uses an unsulz that 
the density of states is rather flat on average and equal to N - ’  (this is reasonably 
true for states away from the ends of the spectrum: see our DOS calculation later on), 
then we actually find that AA - N ’ - ( ’ / f i ) .  Now using the fact that AA actually grows 
as NI/*,  we see that p = 2. This certainly proves our assertion, except for the fact 
that the approximate nature of the unsaa seems to mar the proof to some extent. 
So, to prove our assertion in a different (numerical) fashion, we have numerically 
calculated, by using the method mentioned above, the inverse localization lengths 
for states with reduced energy differences, ! ( E F  - cB)/eel, covering more than two 
decades (from both sides of E ~ )  and have shown them in a double logarithmic plot in 
figure 9. A straight line is seen to fit the data in an excellent fashion, and the slope 
of 1.97 of the best fitted line clearly indicates that the  localization length diverges as 
[ - I E , - E ~ J - ~ .  There is an identical behaviour for energies close to E*. These results 
clearly show that (i) as opposed to DWP, there are no Bloch s l a m  except possibly at 
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cA and cB and (U) as opposed to Wu et al (1992), there is certainly no mobility edge 
in this random dimer model, separating a domain of extended states from a domain 
of localized states. 
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Figure 8 Logarithm of the two-probe resistance (Rz) for a particular sample 
(Q = -CA = 0.4) as a function of length for a Fermi energy of EF = 0.4004. 
The existence ol a generic aponential localization b quite clear here. But the noisy, 
plateau-like structure mntinuing far very large domains of length (for Ep very dose to 

or c g )  may easily lead one to totally wrong amclusions legarding the localization 
behaviour if one is not careful enough. 

In a recent study (Basu el al 1991b) on the nature of Azhel resonances, we 
found that their multifractal spectra are critical-like, i.e. they behave like the states 
at a mobility edge (Thakur et al 1992, see also Schreiber and Grussbach 1991). We 
conjecture that for energies inside the cluster cores of the random dimer model, 
the multifractal spectra would also be critical-like and that for energies inside the 
fragmentation region the multifractal spectra will he like that for an exponentially 
localized state (Thakur et al 1992). Work in t h s  direction IS unaer progress. W e  make 
a remark in passing that whereas Schreiber and Grussbach (1991) apply multifractal 
analysis to the wavefunction only at criticality and surmise whether the analysis could 
distinguish between critical, extended and localized states, we (Thakur el a1 1992) have 
actually applied the analysis to transmittance and have shown that it can distinguish 
between these three types of situations very effectively. 

The Occurrence of these special resonance structures near the two site energies in 
the case of a random dimer is also understandable from the following argument. As 
a basis for comparing the random dimer chain with the purely random (monomer) 
chain, let us compare the parent ordered chain for these two cases. The parent 
ordered chain for the random dimer model is AABBAABB.. . type. When one solves 
the tight-binding equation for this infinite ordered chain one obtains four subbands 
(Kar Gupta and Sen 1992). The two outer bands will have equal but smaller hand 
widths and the two inner hands will have equal but larger band widths. Now the 
parent ordered chain for the purely random system (taken from a binary distribution) 
is of the form ABAB.... Here one can show as before (Kar Gupta and Sen 1992) 
that there will be WO subbands (instead of four) with equal band widths. But the 
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Figure 9. Double logarithmic plot of the inveme locali~ation length against reduced 
energy difference h m  fg, namely I(Ep - LB)/LBI. The symbols A stand for Ep < LB 
and the symbols 0 stand for Ep > eg. A straight line gives an excellent 61 10 the 
data covering more than WO decades and the slope iS about 1.97 indicating a power-law 
divergence of the localization length around E p  = CB. 

interesting thing to note is that for an AABBAABB.. . perfectly ordered chain the 
band gap at the centre is much smaller than that of an ABAB.. . ordered chain. For 
example, when eB = -eA = 0.4, the band gap for an ABAB.. . ordered chain is 0.8 
but for an AABB.. . ordered chain it reduces to 0.154. So the short range order 
even in the atomic scale for the dimer can reduce the band gap appreciably. If we 
increase tA and eB within the allowed region, i.e. IcA - eBl < 2V, the widths of the 
four bands decrease and the band gaps increase. The most important point to note is 
that the two site energies E,, and eB always fall within the two inner broad bands as 
long as leA - eBl < 2V, but as leA - eB( approaches 2V, the two site energies move 
gradually outwards and finally for leA - tBl > 2V, they fall outside the two inner 
bands, within the band gap where only the localized states exist. For example, when 
eB = -eA  = 0.4, the band edges for the central left band are at energies -1.166 and 
0.077; and those for the central right band are at 0.077 and 1.166. Corresponding 
energies for eB = -eA = 0.95 are (-1.001, -0.379). and (0.379, 1.001), i.e. the two 
central bands still include the site energies e,, and tg. But when tB = -eA = 1.1, 
the respective bands are from f1.005 to f0.489 respectively. So it is evident that 
in this case the site energies are excluded from the central bands and fall inside the 
band gap since the outer two bands extend from f2.326 to f2.486. 

Now as randomness is introduced in the binary distribution, both the bands of 
the ABAB... chain disappear and almost all states become exponentially localized. 
Fbr the random dimer chain on the other hand, as localization enters strongly from 
the outer edges of the spectrum, the two outer smaller bands become completely 
fragmented and so we see exponentially decaying states outside the central core as 
in the case of a perfectly random system. But since for the random dimer chain 
one or more than one pair of A (or B) atoms do occur on consecutive lattice sites 
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(there is some short range correlation at energies equal to the site energies), it 
may be. expected that the parent ordered band structure is not fully forgotten but 
is manifested in finite length dimer chains by the Occurrence of a close bunching of 
near resonance states around the ONO site energies only if they are included inside 
the two inner, comparatively broad bands of the parent ordered AABB.. . chain, Le. 
if and only if leA - e,l < 2V. In figure 10, we have shown the density of states (DOS) 
of a random dimer chain of size N = 5000 by direct diagonalization of the ensuing 
tndiagonal Hamiltonian. We can see clearly that the DOS in a small region around 
E = *0.4 is reasonably flat bet not completely flat which would have indicated 
extended band states), but at all other energies (including those around E = 0) 
the ws is high fragmented, hinting at the possible Occurrence of localized states. 
(Note that on average the DOS is still flat except near the ends of the spectrum: a 
fact we used earlier for calculating the divergence exponent of localization length). 
Furthermore the almost flat region of the DOS occurs at almost the same region 
where the cluster core in transmittance occurs (see table 1 ) .  Comparison with the 
results for other sizes tends to suggest that this flat region shrinks to z r o  with chain 
size in a similar fashion as the cluster core does. Tb get some idea about the nature 
of the states in the core and the fragmentation region, we plotted the probability of 
finding the electron Ic,1* against n for two different eigenstates (for N = SOO), one 
well within the cluster core (figure l l ( a ) )  and the other in the fragmentation region 
(figure l l ( b ) ) .  We chose a small system size in these cases for the sake of clarity, 
the results being qualitatively the same for higher system sizes. While it is clear that 
in the fragmentation region the wavefunction decays fast enough, it is also evident 
that in the core region the wavefunclion is certainly not BIoch lype (in contrast to DWP'S 
claim). Further, these apparent& perfectly transmitting resonance states are not like 
Pendry's necklace states either. Thus these resonances are quite new by all counts. 
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Energy 

Figure 10. Density of electronic states 
for a panicular mndom dimer chain of 
length N = 50W obtained by direct 
diagonalizalion. 

Now we want to consider the possibility of quantum diffusion in this random 
dimer model. Let us consider a fixed Fermi energy of the electrons depending on 
their number density. If this Fermi energy does not fall inside one of the clusters, the 
conductance decays with length very fast (actually exponentially, very much like that 
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" " 
FIpm 11. (a) Probability of finding the eleclmn a1 different sites for a Fermi energy 
equal lo one of the exad eigenstates ( E  = 0.406058546 391 26) which lia at the centre 
of one cluster core for a random dimer with N = 500. lhis slate d o s  not bok at a11 
like a Bloch state even though it Seems la be of nondecaying type. (b) n e  Same as (a) 
but for an eigenstate ( E  = 0.257 191 728 25909) which i.9 deep inside the fragmentation 
region. Clearly the wavefunction for this sate is spatially decaying. 

for a purely random chain) as indicated hy our figure 1. But for small length samples 
the total probability that this Fermi energy falls within the cluster core around one of 
the site energies is not insignificant. For such Fermi energies, the conductance does 
not Seem to have an overall decay with increasing chain lengths as long as the Fermi 
energy remains within the cluster core for all such lengths. But as one increases 
the system size, there will always be a length (depending upon how far the Fermi 
energy b from the nearest site energy) above which the cluster narrows enough in 
energy domain to exclude the given Fermi energy from its core. From this length 
onwards, on further increment of length, the conductance starts decaying slowly at 
first and eventually exponentially. These are the results that are expected according 
to our analyses above for very large hut finite-length dimer chains. Finally, as the 
length approaches infinity, the total cluster width approaches zero and the number of 
resonance states inside it approaches infinity as well. Thus, an infinite degeneracy of 
states occurs at each of the two site energies which behave as isolated (zero-width) 
resonances in the infinite length limit. The total measure of these resonance states is 
thus zero. This fact is also supported by Bovier (1992) who finds that in the random 
dimer model the localization length diverges in an infinite length sample strictly at 
two exceptional energies only, namely the site energies Now it is also well known 
that transmission through isolated resonances of zero width at zero temperature and 
in the absence of an external field does not nulural(v occur (in linear response theory, 
the applied sfatic electric field is assumed to be vanishingly small). Hence our transfer 
matrix study indicates that almost all the states, except for isolafed resonances of lord 
measure zero, are localized in the given random dimer model and thus there is an 
absence of quantum diffusion in an infinite random dimer chain. 

Finally we would like to comment on the issue of the diffusion of a particle 
initially localized at a certain site. Since the initial wavefunction is a Kronecker delta, 
its diffusion has contributions from all the energy eigenstates. Though in experimental 
situations, the transport in a Fermi system does nof take place in this fashion (that is 
not by taking contributions from all the available energy eigenstates, as we stressed at 
the beginning of this section), we will still consider this problem for purely conceptual 
reasons. According to DWP for leA - eBl < ZV, there is an absence of localization 
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in this system and, in fact, the transport becomes super-diffusive (diffusive) when the 
inequality (equality) holds. But the results of the transfer matrix study as discussed 
above tend to indicate otherwise. ’Ib find some clue on how the effects of disorder 
show up in the diffusion behaviour we solved the time dependent Hamiltonian (1) 
numerically and calculated the MSD as discussed in the introduction for a purely 
random (monomer) chain. For this random ‘monomer’ case, we find a short time 
scale up to which the MSD diverges as t3/*,  but beyond which one can see a crossover 
to the expected bounded nature due to localization. For the random ‘monomer’ with 
eB = -eA = 0.4, this time scale is of the order of only 100 in units of average 
hopping time. This short time scale in the monomer problem may be related to the 
exponential decay of almost all the eigenstates and the exponential decay of the width 
of the perfect resonance states. For the random dimer case, since the widths of the 
individual resonance states inside the decaying cluster core decay themselves as 1/N 
but their number inside this core increases algebraically, there is no particular length 
(or time) scale for the decay of the diffusion ‘constant’ in this way of looking at the 
diffusion of a fermion in a somewhat ‘classical’ fashion. Thus one may not be able to 
assign a single time beyond which there is a crossover in the behaviour of the MSD 
from a diverging to a bounded nature. Hence in numerical computations one may 
see super-diffusive or diffusive behaviour for quite a while. Absence of a singlc lcngth 
or time scale in this problem may probably be related to the existence of a group of 
critical-like (resonance) states inside the cluster core (which exists only for a linite 
size sample). But the critical states are known to decay in a power-law fashion. Thus 
it seems that at hest a ‘sub-diffusive’ behaviour should show up for a very large but 
finite sample. In any case, even in this way of looking at the transport of an initially 
localized fermion, eventually in the infinite length limit the diffusion constant seems 
to approach zero since the support from each of the individual zero-width resonances 
must approach zero. 

The effect of disorder in the random dimer chain becomes very vivid if one studies 
the situation where the hopping energies are perfectly correlated with neighbouring 
site energies. For example instead of keeping the hopping term constant (= 1) one 
may choose the hopping to be 0.94 when an A and a B site are neighbours and 1 
otherwise. This is one example of a correlated random dimer model which seems to 
be relevant in the transport of the polymer polyaniline (Wu and Phillips 1991). This 
very slight change in the hopping seems to remove the cluster core completely and 
the effect of fragmentation (i.e. localization) appears very emphatically everywhere, 
as we have shown elsewhere (Sen and Gangopadhyay 1992). 
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4. Conclusions 

There is a close clustering of resonance states in the random dimer chain for Fermi 
energies close to each of the two site energies as long as the site energies satisfy the 
relation leA - eBl < 2V. The energy domains within which the core of the clusters 
occur are found to decay algebraically as as the chain size increases. The 
number of resonances within the cluster core increases as and the width of each 
of the resonance states inside this core is also found to decay algebraically as 1/N 
where N is the chain length. This characteristic of the dimer chain in contrast to the 
random ‘monomer’ chain is significantly different. In the immediate neighbourhood 
of the region where the cluster core occurs, there is a fragmentation region where 
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the width of each of the resonance states falls off very rapidly (exponentially) just 
as in the case of a purely random chain. Thus for large chain sizes, they cannot 
contribute to the conductance any more. If the Fermi energy falls within the cluster 
region, then the conductance will be significantly large and would not seem to fall 
off with increasing chain size up to some maximum size. But since with increasing 
chain size the energy domain of the cluster gets narrower and narrower, ultimately 
this particular Fermi energy becomes excluded from the cluster core region and the 
conductance starts decaying exponentially. We have clearly demonstrated that all 
states around each site energy have finite localization lengths and that the divergence 
of the localization length as the Fermi energy approaches one of these energies is 
given by - (E, - where S = A, B. Because of this reason and because the 
cluster width decays algebraically (in contrast to a perfectly random chain), a very 
much larger system size would be required to see the crossover to exponential decay in 
the conductance if the Fermi energy is even slightly closer to one of the site energies. 
As far as the diffusion of the initially localized particle at the centre of the chain (site 
0) is concerned, it is true that transport almost without scattering will be supported 
by clusters of an algebraically increasing number of resonance states near the two 
site energies. Furthermore, this support will continue for a very much longer time 
for the dimer than the monomer because the resonances decay algebraically and not 
exponentially. Thus one may see an apparent super-diffusive behaviour for a very long 
time (length). But finally in the infinite length limit all the resonances decay to zero 
width and it is well known that resonances of zero width cannot support transport. 
Thus the initially localized particle cannot obtain any more support of its transport 
from all these perfectly transmitting states since they are isolated resonances of zero 
width. Thus our studies indicate that the above-mentioned random dimer model with 
its short range correlation will not give rise to delocalization of an initially localized 
particle in the buly infinite lengih limit and that there is no metal-insulator transition 
in this random dimer model. 

In spite of all these, it must be noted that the model has two remarkable 
properties. First, two very broad resonance structures occur at two predictable Fermi 
energies (namely the site energies), and those at the site energies survive, with infinite 
degeneracy, even in the infinite length sample. This predictability is not observed for 
the Azbel resonances for a random monomer chain. Second, each of the resonance 
cluster cores along with the individual resonances inside them decay algebraically 
with length. Thus the states inside the resonance cluster cores survive unusually 
long times and have vefy long localization lengths. It is highly remarkable that short 
range order on the atomic scale in the random dimer model has been able to affect 
physical properties on a macroscopic or at least mesoscopic scale. These two facts 
together make the two resonance states very attractive for possible use in mesoscopic 
quantum-mechanical switching devices, because these states are robust enough and 
not too ‘delicate’ to use technologically (in contrast with the Azbel resonances). 
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